PerformaSure"

Demo Guide

July 2003

J2EE performance diagnosis

QUEST
SOFTWARE

Copyright© 2003 Quest Software Inc.

Note: Quest, the Quest Software logo, Quest Central, PerformaSure and JProbe are
trademarks or registered trademarks of Quest Software Inc. Java and all Java-based marks
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries. All other products are trademarks or registered trademarks of their
respective companies.

Contents

3 o T 11 o 410 Y o
PerformaSure OVEIVIBWccciiieeiiiiemiiirssssiirsssssssssssssssssssssssssssssnssssssnnssns

Key Features
Runs on Production or Pre-Production Test Systems
Component-level Instrumentation with Detail Dial
Transaction Tag and Follow with Tree View
Power Diagnostics GUI
Server-by-server Response-time Breakdowns
Reporting and Performance Data Export

WHhy PerformaSure?ccccericcecerincsrerrssssesssssssessssssne e sssssmesssssmsessssmsessnsans

PerformaSure Addresses J2EE Challenges
Shrinking Development Timelines and lterative Deployment Cycles
The Increasing Complexity of Infrastructures
Guesswork and Finger Pointing

PerformaSure is Designed for J2EE Problem Solving
PerformaSure Provides Visibility Into the Entire J2EE Application

PerformaSure Advantages...........cccoiiiiinnininine s

Transaction-Centric Complete J2EE Application Diagnostics
Comprehensive System-wide View

Low, Configurable Overhead

Collaboration Across Teams

Integration with Quest’s Detailed Diagnosis Tools

PerformaSure Supported Platforms and Requirements................ccccceeeunnn.

Platform and Environment Support
Operating Systems
Application Servers
HTTP Servers
Database Servers
Quest Tool Integration
PerformaSure System Requirements
Server
Workstation

Getting Started with the PerformaSure Demo...........cococciiiemiiiinicccccceeeenn,

Installing the PerformaSure Demo Version
Launching the PerformaSure Demo Version

PerformaSure — A First LOOK......ccuuuciiiiiiiieee s ssssesssss s sesssessssssssesessmssnses

Key Components
PerformaSure Agents
PerformaSure Nexus
PerformaSure Workstation

The PerformaSure Approach to J2EE Diagnosis

Introducing PerformaSure’s Viewer Windows
Request Time View
Request Tree View
Threshold View
Metrics View
Network Traffic View

Diagnosing Example Problems with PerformaSure.........c.cccouvivnnniiiennnnnns

Start Workstation, Open Project and See Three Problems
Problem 1: Inefficient Java code

Problem 2: Misuse of database connection pool

Problem 3: EJB Passivation from Metrics evidence

OOV NINNNNNNNOOODOOOOOODUNNNPRWWWWWNNMNNOMNNON = -

For More INformation...........ccciiiiiiieeiciiiiiiinise s ssssssssss s ssssssssssssssessssnsssssssens
ADOUt QUESE SOFtWAIEcceeeeieeiiieieiiiiieieieeeeeeeeeeeeeesesessesssssssssssssssnsnsssssnsnsnsnsnsnnnnn
Java/J2EE Products Available from Quest Software

Introduction

J2EE-based systems are now powering many key IT and customer-facing business
systems. But beneath the convenient abstractions of the Java 2 Enterprise Edition (J2EE)
architecture lies considerable complexity that can lead to unforeseen performance
problems when an application reaches the staging or live production arena. The
complexity of the J2EE technology stack makesit difficult to track down the source of
performance problems — they may reside in the application code, the database, the
configuration of application servers and clusters, operating system, hardware, or in
interaction between any combination of these components. It’s critical to solve these
performance issues as quickly as possible.

That’ s where PerformaSure comesin. With PerformaSure, companies can diagnose any
type of J2EE performance issue and determine its root cause quickly. A powerful,
transaction-centric diagnosis tool for distributed J2EE applications, PerformaSure enables
companies to diagnose and resolve performance problems across the application servers,
databases, and code of a J2EE application.

This Guide provides background information on PerformaSure, an introduction to its
capabilities, architectural overview, and an introduction to its user interface. The guide
also provides awalkthrough of using PerformaSure to diagnose severa “canned”
performance problems. If you received the demonstration edition of PerformaSure, you
can run through this walkthrough directly, using the product itself.

PerformaSure Overview

Offering atransaction-centric view of performance, PerformaSureis alow-overhead
performance diagnosis tool for multi-tiered J2EE applications running under load in test or
production environments. PerformaSure enables application administrators, developers,
system architects, database administrators and quality assurance staff to measure, analyze
and maximize round-trip transaction performance and minimize infrastructure costs.

PerformaSure' s unique Tag and Follow technology and “power diagnostics” GUI alows
for aunified, graphical view of round-trip transaction performance. By tracing
transactions through the J2EE system and reconstructing the execution path, PerformaSure
provides broad and deep visibility into the J2EE performance data stack, focusing on end-
user response times as well as method-level timing.

PerformaSure Demo Guide 1

Key Features

Runs on Production or Pre-Production Test Systems

Ultralow-overhead agents with automatic sampling enable PerformaSure to run on
production systems, as well as test environments. When alive performance problem is
detected, operators can collect high-level performance data while incurring minimal
overhead (as little as 5-10%) on the live system.

Component-level Instrumentation with Detail Dial

High-level component performance view makesinitia investigation easier. Configure the
tradeoff between the level of data collected and the associated overhead with the Detail
Dial, enabling application administrators to quickly identify the bottlenecked component
for deeper analysis by functional experts.

Transaction Tag and Follow with Tree View

PerformaSure’ s unique Tag and Follow technology provides a transaction-centric view of
performance data. Tag and Follow reconstructs the end-to-end execution path of
individual user transactions. All physical servers, logical software components and
methods are shown in a color-coded Request Tree View to instantly identify bottleneck
components.

Power Diagnostics GUI

The PerformaSure Workstation is designed to speed navigation and diagnosis of complex
J2EE applications. Theintuitive “Zonar” time-navigation feature facilitates investigation
by allowing users to quickly fast-forward, rewind or zoom into problematic time periods.
Integrated Metrics viewers provide system, app server, and OS metrics across all tiers that
are correlated with end-user response times.

Server-by-server Response-time Breakdowns

PerformaSure provides objective data on which end-user transactions are slowest and
which server(s) isresponsible for these unacceptabl e response times. Database operations
are instrumented to show time spent in each JDBC call.

Reporting and Performance Data Export

Generate detailed performance analysis reportsin Acrobat PDF, XML or Excel-friendly
CSV format to easily show management and team members the source of any J2EE
performance problem. Compare and trend performance metrics over time.

PerformaSure Demo Guide

Why PerformaSure?

PerformaSure Addresses J2EE Challenges

PerformaSure helps I T, development and QA groups solve performance problems as
quickly as possible in production or test environments.

Shrinking Development Timelines and lterative Deployment Cycles

Development timelines are always rushed—the business always needs the application in
production “yesterday” . IT groups are experiencing a push from upper management to
better utilize existing systems—and less money for hardware and softwareis available.
Infrastructure costs are high to begin with, particularly in hardware, database and
application server licenses.

PerformaSure fits this model perfectly. Companies can easily integrate PerformaSure into
the iterative testing, staging and release lifecycle, aswell as useit to quickly diagnose
unexpected problems in production. PerformaSure reduces the need to purchase costly
hardware or software to solve the problem.

The Increasing Complexity of Infrastructures

As application servers provide more and more services, they necessarily become more
complex, resulting in agreater number of application server resources and settings to
properly configure and tune. And as systems become more distributed, there are still more
factors to consider: network efficiency, clustering setup, third-party systems and
interactions between (possibly remote) components. And finally, al this has to work
perfectly for users nearby and across the globe.

With PerformaSure, performance teams are not only able to tag and follow transactions
through the entire system and back again, they see how the application interacts with all
the components in the system. PerformaSure is designed for rapid and accurate

investigation of the entire system, starting from the perspective of end-user transactions.

Guesswork and Finger Pointing

Deciding where to start to fix poor performance can explode project timelines. The
inherent complexity of the underlying J2EE system makes it easy for IT groupsto indulge
in finger pointing when it comes to figuring out who should fix a problem. Traditionally,
system administrators had operating system monitors, devel opers had profilers and
debuggers, database administrators had database analysis tools, network administrators
had network sniffers and so on. But it’s difficult to solve performance problemsiin

PerformaSure Demo Guide 3

disparate systems with a collection of point tools that don't work together. As aresult,
everyone is quick to point the blame el sawhere.

IT groups need a diagnosis solution that’ s designed for J2EE, one that bridges the gap
between black-box load testers (which do not provide application-specific performance
timing information) and detailed point products (such as code profilers and network
monitors). They need a solution that allows usersto quickly identify problematic 2EE
components (servers, clusters, databases, network), especially from the perspective of end-
user transaction response times. 1T groups must be able to identify which tier, server and
component is causing the problem in order to clearly determine who is responsible for
fixing it. In other words, atool like PerformaSure.

PerformaSure is Designed for J2EE Problem Solving

Developers write and test application code in an environment quite unlike that in which
the application will eventually be deployed—away from the complications of realistic
databases, networks, clusters and interactions between the application components that
other team members have devel oped. When application components are assembled in pre-
production and even deployed to production, these complicated factors can lead to
dramatic and unanticipated performance problems. Teams are discovering that algorithmic
issues, database interaction and network efficiency problems that appear under full scale
user load on the distributed system are among the first problems they need to resolve.
Most diagnostic solutions are either too high in overhead (profilers) or too light on detail
(load testers) to provide a solution for J2EE.

PerformaSure is designed for problem-solving in full scale J2EE environments, in both
staging and production. In either environment, PerformaSure captures performance data as
the system works under load. Its unique Tag and Follow technology and power
diagnostics GUI makes sense of the reams of metrics datato allow teamsto tracea
bottleneck to itsroot cause, quickly and with certainty. PerformaSure hel ps performance
analysts identify the following kinds of problemsin single-server or clustered, distributed
systems:

o Inefficient servlets, JSPs, EJBs, Java classes and methods

e Slow running SQL statements

o Inefficient EJB/DB interaction

e Application server configuration and deployment settings

e Remote method invocation (RMI) and object serialization problems
e Operating system parameters and settings

e Limiting hardware components

e Poorly performing third-party components

e JVM heap usage and configuration problems

PerformaSure Demo Guide

e Load balancing problems
e Cluster configuration and performance problems
e Excessive network traffic

PerformaSure Provides Visibility Into the Entire J2EE Application

The big question in diagnosing J2EE performance issues is what component or interaction
between components is the source of the bottleneck. Most tools do not provide detailed
application-specific information. Still fewer tools provide visibility into al of the
components of a J2EE application, including issues relating to application infrastructure
configuration and JDBC/database interaction. What are the real limits to performance and
scalability? Where are transactions spending their time? Which components are misusing
the database or the network and why? How is the application server or operation system
configuration impacting performance?

With PerformaSure, performance teams have visibility into the entire distributed
application and its interaction with all the components of a distributed J2EE system,
including Java components (EJBs, servlets, JSPs, Java classes), memory usage, network
usage, application server configuration and tuning, and database interaction. The key to
most performance problemslies in the application’ sinteractions with each system
element, so thisisacritical capability of PerformaSure.

PerformaSure Advantages

PerformaSure fills an important and unsatisfied need by providing deep application
diagnostics from a transactional, system-wide perspective for both test and production
systems. PerformaSure gives performance teams objective data, allowing them to
collaborate in problem solving for even faster time-to-repair. And PerformaSure is part of
Quest Software’ s complete solution for J2EE application performance management.

Transaction-Centric Complete J2EE Application Diagnostics

Taking a transaction-centric approach is the fastest way to identify the most important
bottlenecks — those that affect end-users. PerformaSure was designed for transaction-
centric investigation and diagnosis. With its unique Tag and Follow technology,
PerformaSure breaks down transaction timing by component, server or cluster to show an
end-user point of view. PerformaSure collects and correlates a full complement of vital
performance metrics for breadth and depth of J2EE diagnosis. Aswell, PerformaSure lets
analysts drill down to the transaction and method in question to find the root cause.

PerformaSure Demo Guide 5

Comprehensive System-wide View

PerformaSure provides arich graphical user interface and views that guide users through
all performance data quickly and intuitively. In addition, powerful time navigation with
PerformaSure’ s Zonar technology allows analysts to fast-forward and rewind through, as
well as zoom in and out of, all collected performance data.

Low, Configurable Overhead

PerformaSure allows users to select a specific transaction to tag and follow for amore
focused low-overhead investigation. Configurable investigation options and flexible
settings for the non-intrusive Agents installed on each component mean it's easy to target
investigation without changing or recompiling code.

Collaboration Across Teams

The comprehensive system-wide view, intuitive interface and powerful navigation make
PerformaSure anatural catalyst for sharing diagnostic intelligence between teamsinan IT
organization. What better way to demonstrate that a particular performance problem
originates in database calls than to show a developer and a database administrator the
specific transaction, where it’'s slowing down, and why? Guesswork and finger pointing,
the symptoms of alack of comprehensive performance data, are no longer necessary in the
presence of hard facts. The right expert can get to work and solve the problem more
quickly than it usually takes to begin a dispute. With PerformaSure, all members of a
performance team have the data they need to swiftly fix a problem and get back to work.
Aswell, geographically dispersed teams can access PerformaSure Workstations from
remote locations, allowing them to view performance data concurrently.

Integration with Quest’s Detailed Diagnosis Tools

Detecting, diagnosing and resolving J2EE performance problems can be too big ajob for
one expert or one tool. Detecting problems in production isn’'t enough if you can’t
automatically gather performance data from the live system. And often the culprit behind
performance problems lies outside or deep within the J2EE application components — such
as deep within the application code itself, or in complex database queries.

PerformaSure functions as part of an integrated J2EE application performance
management solution, made up of Foglight, PerformaSure and JProbe. Foglight monitors
J2EE applicationsin production 24x7; when a problem surfaces, it can seamlessly trigger
PerformaSure to capture diagnostic data from the live system, alowing production staff to
move rapidly into the diagnostics phase of the repair cycle. When the application codeis

PerformaSure Demo Guide

at fault, PerformaSure hands off to JProbe to zoom in on deep performance, memory, and
threading problems. PerformaSure can also launch Quest’ s database analysis tools for
Oracle and DB2 to diagnose complex database issues.

PerformaSure Supported Platforms and Requirements

Platform and Environment Support

Operating Systems

e Sun Solaris

e Windows 2000, XP
e IBMAIX

e HP-UX

e Linux

Application Servers
e BEA WeblLogic Server
e |IBM WebSphere Application Server

HTTP Servers

e SunONEHTTP Server

e ApacheHTTP Server

e Microsoft 1S

e BEA WebLogic HTTP Server
e IBM WebSphere HTTP Server

Database Servers

¢ Any JDBC-compliant RDBMS, including Oracle, IBM DB2, MS SQL Server
and Sybase

Quest Tool Integration

e Foglight with J2EE cartridge
e JProbe Suite

e Spotlight on Oracle

e Spotlight on DB2

e SQLabVisionfor Oracle

e SQL Tuning for DB2

For the latest details on supported platforms, visit http://java.quest.com/performasure.

PerformaSure Demo Guide

http://java.quest.com/performasure

PerformaSure System Requirements

Server
e 750 MHz class processor
e 1GBRAM

e 10 GB disk for data storage
e 100 Mbps network adapter
e SunJDK 1.3xorl1l4

Workstation

e 750 MHz class processor
e 256 MB RAM

e 500 MB disk

e SunJDK 13xorl4

Getting Started with the PerformaSure Demo

Y ou may have received the demonstration version of PerformaSure with this document.
The demo version isidentical to the standard rel ease of PerformaSure except that it has
been packaged for easier evaluation. Normally, PerformaSure’ s server-based components
need to be installed and configured on every machine running components of the J2EE
system, and then a performance data session must be captured while the J2EE system
itself runs under user load. The demo version skips these requirements by including a pre-
recorded data session and project for you to work with.

Installing the PerformaSure Demo Version

Theinstallation program sets up the PerformaSure client, the server-side components, and
the pre-recorded data session on your computer. Perform the following stepsto install the
PerformaSure demo on your computer:

1. Launch the PerformaSure installer.
If you received the Demo on CD-ROM, insert it into the CD drive on your computer
and the installer should launch automatically. If it doesn't, launch the installer
manually by locating and executing the demo_installer file on your computer.

2. Proceed through the installer panels to accept the license agreement, choose the
installation directory and specify other options.

PerformaSure Demo Guide

3. Click Finish on the final installer panel to begin the installation.

4. After copying files, alicensing panel appears. PerformaSure will not run unlessit has
been enabled for your machine. If you received alicense file from a Quest
representative, you can install it now (click Add License File and select the
performasure.license file you received). If you do not have alicense file you can
finish the instalation without it and enable the product manually before running it.

When the installer has finished, a PerformaSure Demo program group can be found in the
Start menu, containing shortcuts to launch the demo version, run the license manager, and
view the online product documentation.

Note: If you did not receive alicensefile, please contact your Quest representative to
obtain one. When you have received it, launch the License Manager (from the
PerformaSure program group). Click the Add License File button and select the
performasure.license file you received; PerformaSure should now be enabled.

Launching the PerformaSure Demo Version

1. Start the PerformaSure Demo launcher (for example, Start > Programs >
PerformaSure Demo > PerformaSure Demo).
Thislauncher starts the PerformaSure Nexus and the PerformaSure Workstation user
interface. A console window should open and display several launch and initialization
messages. Finaly, aLogin dialog will appear.

& PerformaSure o [3

User Name: [user |

Password: || |

Nexus: | localhost = |

PerformaSure™ | befie.. |

J2EE performance diagnosis

Login Exit
:

© Joc) Quest Saftware, inc. Al rights reserved.

2. Usethe default user name (“user”) and password (blank); click the L ogin button to
proceed.

PerformaSure Demo Guide 9

3. Oncelogged in, PerformaSure will =o1x]
ask you to open a previous project
or start anew project using a
performance data session. Select
the “Petstore Demo” sample

project and click OK.

(@ Open Recent Project:

Petstore Dema

{_! Open Existing Project

(] Open Session in New Project

The Project window opens, displaying a
list of views. These views are actually
starting points for finding three J2EE performance problemsin this application; we'll
cover them later. PerformaSure is now ready for use.

| Toolsv | | 0KQ| Exit |

I =[5

EJ Petstore Demo - PerformaSure

File Project Tools Windows Help

I Session: progressive load 2 Choose...

r Browsers r Thresholds

S Browsers
@ 751 - Transactional Analysis
E 1 - Request Time Browser: Three Problems
@ 2 - Tree Browser: Verify Signin Use Case
@ 3 - Tree Browser: Product Use Case (Component)
@ 4 - Tree Browser: Product Use Case (Method)
@ [2 - Metrics Analysis: Categary Use Case

Name: Petstore Demao
Creator: user
Comments:

PerformaSure — A First Look

PerformaSure collects correlated performance metrics for each service request received
and processed by a J2EE application. Beginning with the initial HTTP request,
PerformaSure follows the path of execution through web servers, application servers, and
the database. Collecting performance datais awholly separate step from analyzing that
data to diagnose the root cause of a performance issue.

10 PerformaSure Demo Guide

Key Components

PerformaSure is made up of three main components: Agents, the Nexus and Workstations.

PerformaSure Agents

Highly configurable, lightweight PerformaSure Agents collect vital metrics and timing
information, such as method-level timings and system and application server metrics,
using Quest Software’ s unique Tag and Follow technology. HTTP, application server,
and/or operating system Agents are installed on each server and tier in the J2EE system.

PerformaSure Nexus

The PerformaSure Nexus is the central hub of data processing, receiving messages from

all Agents, performing time correlation and synchronization and writing data to a highly-
specialized data store. The Transaction Correlation Engine within the Nexus uses unique
technology and method-level timing information from the Agents to reconstruct the end-
to-end execution path of end-user transactions.

PerformaSure Workstation

The PerformaSure Workstation is arich, intuitive graphical user interface for investigation
of collected performance data. Designed for problem diagnosis and resolution, the
interface provides powerful time and data navigation controls for quicker time-to-repair.
The ease with which a user can navigate through data in the Workstation is one of
PerformaSure’ s distinguishing factors; only with this rich user interface can problems be
easily identified. Each team member can run the Workstation on their local PC and access
one session for collaborative performance diagnosis.

The PerformaSure Approach to J2EE Diagnosis

The PerformaSure approach to the complex task of diagnosing J2EE performance issuesis
straightforward. First, it captures performance data from the J2EE system as it functions
under user load (on either the live production system or a staging/test system). Once
performance data is captured, PerformaSure’ s specialized GUI-based tools help track
down the source of performance bottlenecks quickly. These tools are open-ended,

enabling analysts to track down al types of J2EE performance problems. Because every
complex investigation invariably leads the investigator down different paths of analysis,
PerformaSure supports this approach. In general, analysts using PerformaSure follow an
investigative process like the following:

1. Collect ahigh-level performance data session either from the production system or
from atest system with a simulated load.

PerformaSure Demo Guide 11

2. Determine which transactions are being executed during slowdowns using the
Request Time View. For a problematic transaction, identify which server components
appear to be responsible for the bulk of the slowdown. Here the focus is on the end-
user perspective, where bottlenecks matter most.

3. Tracethe execution path of the transaction using the Request Tree View.
PerformaSure' s diagnostics GUI helps quickly identify hotspots at a component, class
or method level. Theinvestigation can now take different paths, depending on the
nature of the bottleneck.

4. Code-level problems are best diagnosed at this point by a deep source code analysis
tool like Quest’s JProbe, which can drill down to the root cause of algorithmic,
memory or threading problems. Further diagnosis of JDBC or database problemsisa
job for a specialized database anaysis tools like those found in Quest Central for
Oracle or Quest Central for DB2.

5. Use PerformaSure’ s intuitive viewers to diagnose general and J2EE-specific problems
like application server cluster configuration and limiting OS components. For
example, identify periods of time when application resources are being taxed with the
Threshold View. Then use the Metrics View to correlate these and different metrics
across atime period to analyze, test and validate possible root causes.

6. Oncetheroot causeisidentified, fix the problem, test the solution and deploy the fix.

Because J2EE expertise varies within an I T team, the process can be easily split among
application administrators, DBAS, developers, architects and quality assurance. This guide
will walk through several real-world examples of diagnosing problems, using this
approach.

Introducing PerformaSure’s Viewer Windows

Diagnosis with PerformaSure is accomplished by working with its graphical viewers (also
called browsers). There are five types of highly configurable GUI browsers available, as
described below. For more basic information on PerformaSure' s rich GUI, please see the
PerformaSure User’s Guide in the product documentation.

Request Time View

A good starting point for locating bottlenecks, the Request Time view shows the execution
time of each transaction or service request, broken down by servers or clusters. The
Request Time view’s bar chart very quickly shows you the most expensive requests, and
more importantly, which server(s) is responsible for the slow response times.

PerformaSure Demo Guide

lﬁ 1 - Request Time Browser: Three Problems - PerformaSure o]]
Browser View Tools Windows Help
E. @, El, @, E e, é - E @ Active Metric:| Avg. Cumulative Time ™
A I & B G & | wed May 14, 55927 e — e =7 e @
Os Os [25m 0=] 55m Oz

[L L e N

Name| * Avg. Cumulative Time (g) |
0 1 2 3 4 5 G

| POST hitp AWk Tier[festoredcontroliverifysionin |.

Cluster: MyCluster

| GET hitp:ifieb Tier]festoreicontrolproduct |-

| GET hitp: Aivehb Tierfestorefcontrolicategory |“

A, Curnulative Time 730 %

Ay, Call Count
Av. Exceptional Exits

1.000 freq
0.000 freg

Mame FPercent Contrib... | Avg. Cumulative...| Total Cumulativ..

O-CIAGET hitpiifeh Tierliestorelcantrolicategory 100.0 1.264 10948.330
©-CIGET hitp:ifveb Tierliestorefcontralfproduct 100.0 1.887 14391149
O-CIPOST hitp:Aifeh Tierlfestore/contraliverifysio 100.0 4.820 265072

[«

[v]

e Identify slow running transactions and the tier, cluster or server responsible
e Eliminate finger pointing and guesswork with objective data
o Dirill down with other viewers to determine root cause of bottleneck

e Generate management-level PDF reports of problem transactions and offending
servers

Request Tree View

The diagnostic workhorse of PerformaSure is the Request Tree view, which shows the

complete execution path of atransaction as atree graph. This“call graph” is color-coded
to highlight the most time-consuming component or method, along the most critical
performance path. Like all PerformaSure viewers, the visual state of Request Treeview is
saved in the project to enable easy collaboration with others on the team.

PerformaSure Demo Guide

13

14

2 - Tree Browsetr: Yerify Signin Use Case - PerformaSure =10 5[

Browser \iew Tools Windows Help

E - @ - @ - @ - E 9 - é - E @ ":" Active Metric:| Avg. Exclusive Time &7 i =| | Bunding Mode:| Method v| D\splay‘quues‘I Averages "

AL I BB G @ | wed, May 14, 85827 95727 @

20m 0z [1m0s] S8m Os
(L i L L L B R |
T

1 = = [Ex)

=3
L T B L B N b B

7 ..petstore util— |

getProfiletgrH) =2

P _nzwork_t

= .. LligrtControllerEJE
.eMor getProfiletdgr)

[>...4.108 58:1521:0raqc

=7 . petstore control &b ShoppingClismControllerEJB_Snoadg ECImpl

b
Method: com.sunj2ee blueprints.petstare.contral.ejh. - - 7
ShoppingCliemControllerEJE_Sngasg_EOImpl, |5 Somnedtion
getProfileMar)

Cluster: MyCluster leResuttSetinpl

Avg. Cumulative Time 15.893 s freq
Max. Cumulative Time - sireqg
Av. Exclusive Tirme 10.986 5 /req

erEJB_Snoada_lmpl

E_ymg23g_lmpl
ry ey String)

7 .. hlueprints customs 7 ..unt.gjh Accs

yPrimary ey

o230 _lmpll)

7 ..er.gh CustomerEJE
..courtDetgilsString

4088 ayg. Call Count 1.000 /req
Avg. Exceptional Exits 0.000 / reg
[» .eblueprints custo] Avg. Incomplete Requests 0.000 / reg m

ErtityCoritext)

I =7 . tCortrallerfveblmpl
I r getProfiletgrEJB0)

-

’El@ﬁ QueryInfs | =10 100% [4]
Name ‘Agem | g CaHCnum‘ call Cnunt|Tma\Cumu\a v| Avg. Curnulativ ‘ May, Gurmulaty. | vy, Exclusive ‘Ang
©-CIPOST hitp:ifeh Tierfestoreicontraliverieh Tier - g 156.984 76164 -

[

1.174

[« i

[

e View application architecture and end-to-end transaction execution paths—from Web
server to SQL statement

e |dentify problematic components by tracking unacceptable method-level timings, call
counts and exceptional exits at the application code method level

e Examine cluster performance, load balancing problems, EJB interactions and RMI
invocations

e Generate PDF reportsidentifying problematic components, methods and SQL
statements for individual end-user transactions

Threshold View

Another possible starting point for performance diagnosis is the Threshold view. This
view provides a high-level aggregation of metrics that have exceeded their thresholds. For
example, when the customer login function was slow, was the CPU excessively high, or
was memory usage maxed out? Or was the server perhaps running low on JDBC
connections or EJB caching pools? This view enables analysts to take a high-level view of
metrics thresholds, to quickly identify problematic time periods.

PerformaSure Demo Guide

1 - Thresholds Browser - Performasure i =] 3

Browser View Tools Windows Help
F.E. B, e . e.

Al A I B S G & | ed May 14, 3:59:27 — g:5727 [

Oz Oz [23m 0z] 58m 0=

K i R e e e
0z 20m O [30s] n 305

O O O O S S R S B S S BN R | [|
L

_.2 ¥ Jws20116:80 § estore J control f category f Cumulative Request Time (ms) f All Agents
20K

1]

-+ Average Metric Values Thresholds hzx3 000 bin:- Z Unitz: miliseconds

~ Threshold Violations

REFETING Sy Sterm | PFrocessor FOCESSOr [IMe hetances E i T Petstore? (System
R i h

... §wz20116:80 f estore / control § cateaori § Cumulative Reauest Time imsi § Al Aaents _

L FET Wit 4 Fwes20116:80 £ estore [control .fcate oy fCumulative Reauest Tirne Emsi ! iPlanet EiPIanet) =

T¥at i st { D) % Oy Tikewa { 0011 st COLY ¢ Dstetorad (St
T

e Quickly navigate and zoom into problematic time periods for further investigation
e |dentify key system and application server metrics that have exceeded thresholds
e Focus on performance as it relates to end-user response times

Metrics View

The Metrics View provides a unified view for detailed investigation of arange of metrics,
including VM memory usage, operating system metrics and application server runtime
metrics. Using a simple drag-and-drop interface, users can plot metricsindividualy or
correlated according to time, graphically comparing performance across system tiers or
between servers deployed in acluster.

PerformaSure Demo Guide 15

IEZ - Metrics Browser - PerformaSure -0l x|
Browser View Tools Windows Help

E.E. 8. EH . He. . &

A B S G & | ywed, May 14, 85927 e ——] 5T 0T []

Os Os [24m 0z] 25m Os
I e e B e e B B B e B B B e B B |

© Java Virtual Machine Alq 0s 20m Oz [30s] 30s

@ Operating System | O N N N N N N AN N KN KN AN A R RN RN

© Performasure Internals =

& Request = | == _trol fcategory § Cumulstive Reguest Time [ms) fiPlahet (iPlanet) | @ 5
@ weblLogic 20k

©- Clustered Servers
@ EJE Caching

© Aptivations v
Thresholds |73

© Cache Accesses J

©= Cache Hits ng:S,DDD

© Cached Beans Wir: -

@ Passivations
©- All Instances
©- estorefaccou
©- estorefcart
©- estorefinvent
@ ostorelorder
@ gstorefprofile
@ estorelsce

{avg) Adm

Unita: miliseconds

g L_pf-‘..'f Remove Metric

= | = aching ! Passivations [estore [soc (#) § Fetstore2 (WebLogic) ™ | E :

=luln]

(avy) Pet
{av) Pet 700 =
@= gotorelsigho ' Thresholds @

@ EB Locking

Mz E00
@ EJB Poaling 500 Mir; -
©- Entity EJE Homes -
©- Execute Queues Units: court

300

r Retmaove Metric:
00

[| = _or ! % Processor Time £ All Instances (%)|/ Petstore] (System) | @

: -
| | 2 z (M

©- JDBC Connection P
@ Java Message Servi
©- Servers

& Servlets :
@ Stateful Session EJB
@ Stateless Session EJ

Dl N NN NN YRR RN RN RNENI

e Instantly correlate operating server metrics and application server runtime metrics
among clustered servers or across servers from different tiers

e Tune application server configuration and deployment settings to maximize
application performance without code changes

e Tune operating system parameters and identify limiting hardware and software
componentson all tiers

e Graphicaly identify clustering imbalances

Network Traffic View

The Network Traffic View provides a system-wide view of 1P-to-1P network traffic
between all serversin the deployed environment. This unified view of traffic allows a
performance analyst to immediately identify which servers are sending and receiving
unexpectedly large amounts of data at any given time, and drill down on problem time
periods for further analysis.

e View incoming and outgoing network traffic from all deployed servers

PerformaSure Demo Guide

o Eliminate network bottlenecks due to poorly formed queries or excessive object
seriaization
e Diagnose network congestion between tiers based on end-user requests

Diagnosing Example Problems with PerformaSure

Now we' re ready to go through some real examples, using PerformaSure to diagnose
several canned performance problems in a J2EE application. But first, a bit about the
application and environment.

The J2EE application in question isthe BEA J2EE Pet S s & e 4 e & s 5
Store application. Well-known and easily available, DA RN N
BEA'sversion of Pet Store has severa performance

issues that we can easily discover and diagnose.

Figh | Dogs | Reptites | Gt | Bleds

Chihuahua

The application was set up in atest environment made | EEEETTEE—TETE

. EST-26 Adult Male Clulmalwna ~ $125.50 RS
up of asmall WebL ogic server cluster, an HTTP EST.27 At Fenale Ciuahs $15529 e
server, and a database server. e pwaE T —

Nexus

A'S
WeblLogic 6.1

#

y N
Quest Benchmark
Factor
.
.
N 7’
* .) s Q App Server Agent
Weblogic 6.1 0 HTTP Server Ageni

© system Agent

Load Testing Tool HTTP Server App Server Database

PerformaSure Agents were installed on each machine in the environment and configured
to communicate with a PerformaSure Nexus machine. With all components of the
application running, we captured a detailed performance metrics session with
PerformaSure, using Quest’s own Benchmark Factory to pump a simulated user load
through the system. This brings us to the present — we have a recorded performance data
session, and are ready to analyzeit. Let’s assume that one of our colleagues has done

PerformaSure Demo Guide 17

someinitial analysis and has created a project containing some initial views on the
session. This gives us a jumpstart and will help us get right to analysis more easily.

Start Workstation, Open Project and See Three Problems

If the PerformaSure Workstation is not already running, launch it, log in, and open the
“Petstore Demo” project as described earlier.

Lsi0n: progressive load 2

Openl ng the proj e(.:t bri ngs up the | Browsers rThreshulds

Project Browser window. Several £ Browsers

folders and saved views are defined § (=i Trasaclional Analysis |
o [=|l1 - Request Time Browser. Three Problemss,

here, courtesy of our fictional I-Free-Brauser Vel SigninbeeCasE

@ 3-Tree Browser, Product Use Case (Component)
CO| Ieague- @ 4 - Tree Browser, Product Use Case (Method)
™9 2 - Metrics Analysis: Category Use Case

A good starting point for investigating

performance bottlenecks in a J2EE application is the Request Time view, so let’s double-
click the “Request Time Browser: Three Problems’ item in the Browsers >

1- Transactional Analysisfolder. This brings up the Request Time view.

1 - Request Time Browser: Three Problems - Per i [m] 5]

Browser View Tools Windows Help

E - @ - @ - @ - E 9 - @ - E @ Active Metric:| Avg. Curmulative Time ™

A0 I B B G 8 | yed, May 14, 3:59.27 — 35727 [
D§ I[??mﬂs]

S8m Os
AR |.|i|.|.|.|.|.|.|.|.|.|.|.|.|.|.|.|.|

Os
[ERES|

Name | = Avy. Cumulative Time () |
o1 2 3 4 5 8

| POST http: ifveb Tier[festoreicorntralf erityzignin |I -

| GET hitp: iTvveb Tier[iestoresfiontroliroduct |.:-

| GET hitp:/iTvveb Tier|festoresfcontrolicategory |E

Query Info

This view shows us how much time it took to respond to user requests. Three very slow
transaction requests are shown. Move the mouse pointer over the transaction name to see
more details. The stacked bar chart to the right of each transaction breaks down the timeto
each tier and server (details pop up if you move the mouse over each section of the bar).
Each transaction has performance issues that can be addressed. So let’s go.

PerformaSure Demo Guide

Problem 1: Inefficient Java code

Wefirst notice that the Marne |~ Avg. Cumulative Time (3)
“verifysignin” transaction seems ! ; ‘ i 4 2 §
to be spending an inordinate tveriystrn Bl)N I

R
amount of time in one particular oo | Tl L
T

area of itsexecution. That is, one part Ay, Cumulative Time 73.0 %
istaking far longer than the other two

. Awg. Call Count 1.000 § reg
parts. Moving the mouse over the long . Exceptional Exits 0.000 { reg

light purple bar, we see the transaction is spending
73% of itstimein the WebL ogic application server cluster (“MyCluster”). Thisindicates a
possible problem with the application code.

Thisview currently shows us the transaction’ s average execution time, over the entire
session. Before we drill down on the transaction, we should try to isolate the time period
where the application code really started to bog down. To do this we can use asmaller
time dlice and “step” through the run using the Zonar control.

Grab the right edge of the Zonar and drag it
left so that it only shows a five-minute time
dlice. Then move the entire Zonar along the
session in five-minute increments. Notice that
at the 20-minute mark the total time jumpsto 26 seconds and the application server
portion becomes areally huge part of the execution time.

Thislooks like a good spot to start the next phase of the diagnosis. Right-click the
verifysignin transaction name and select New Tree Browser Using Selections.

PerformaSure Demo Guide 19

20

Request Tree - PerformaSure 1Ol x|

Browser View Tools Windows Help

Fl. . @, £, @ @. &. S % | acvewetric|avg cumuistive Time '|£ =! | Bundling Made:| Companent ¥

AL I B B G, & e, May 14, 85927 Q5727 ®
. IS‘Sn:Ds

Os 20t Oz [Smis]
[[l

[v]

—— ~ ...0lweb MainServiet =7 .0lwveb MainServiet | L

Name |Agent |Avg. CallCount| call Coum|TotaI Curnu.. | Avg. Cumulat..| Max. Cumulat...| g, @

©CIPOST httpdifweb Tierfestare/contweh Tier 4 156984 26164

[

[{[EE

The Request Tree view shows us the execution path of the transaction, intuitively coloring
bottlenecked components in bright shades of red. We can configure the view to show
execution at different levels, and determine bottlenecks based on any one of a number of
different metrics.

By default we see execution at the component level. Let’ sdrill down to the method level
and see what' s bottlenecked by the Average Exclusive Time metric, which should really
highlight the true bottlenecked area of the code.

Using the combo boxesin the
Request Tree view window,
change the Bundling Mode to
Method and the Active Metric to Avg. Exclusive Time. Notice how the call graph changes
to reflect the new selections.

We can use the PerformaSure “Fast Find” feature to prune the call graph down to make
the most critical paths easier to spot. To see thisfeature in actionis

to open the Panner window (using the +£* button) and then click the ~ I;Z};li =
FastFind button. FastFind |

= ==

Now there are only three red hotspotsin the body of the transaction. Zoom in on the first
one, in the middle of the tree. Use the column resizing knob to widen the node to read the

PerformaSure Demo Guide

Active Metric:|Avg. Exclusive Time 7 | ﬁ =) Bundling Mode:| Method [: 7 L

class and package name. When we move the mouse over the
Profil eMyr. get Profil eMgr method, the tooltip shows usthat it aloneistaking
almost 11 seconds (Avg. Exclusive Time metric) to execute!

=7 _petstore control gjb. ShoppingClisntCortrollerEJE_Snady_EOlmpl

Method: corm.sun.j2eeblueprints.petstore.control.ejb
ShoppingClientContrallerEJB_Sngadn_EOImpl.
l getPrafileMgrg

Cluster: MyCluster
Time
Avg. Cumulative Time 15893 sireq

Mazx Cumulative Time - slreg
Avg. Exclusive Time 10.986 sireq

1.000 i req
0.000 i req

Quickly looking at the two other hotspots further along, we can see that INDI lookups
were being performed for the Pr of i | eMgr class. This clinchesit. The performance
bottleneck is definitely being caused by a code problemin the get Pr of i | eMgr method.
(Note: To double-check whether you’ re seeing what you should be seeing, go to the
Project Browser and open the “Tree Browser: Verify Signin Use Case” item — this shows
the Request Tree view configured to this point.)

PerformaSure makes it easy to continue analysis with a more specialized tool. Because
thisis a code-level problem, we can right-click the method in the Request Tree view and
select Export JProbe Launcher File. Thisfile can then be used to launch JProbe to
analyze this particular method to get to the root cause of the problem and fix it.

Problem 2: Misuse of database connection pool

Let us now diagnose a database-related problem. Close the Request Tree view and look at
the Request Time view again. Re-set the Zonar to show the entire run.

The second

. | GET http: ifvveb Tier[festoreicontrolfroduct |c¥
transaction, —

Cluster: hMyCluster(JDEC)

“product”, seems to be
spending almost half itstimein JDBC and Sl il 406 %

the database. That seems excessive, since the
Petstore database is small and isrunning on a
powerful, dedicated Oracle 8i server.

A, Call Count

176.294 [req

PerformaSure Demo Guide 21

To see what' s going on, let’ sright-click the “ product” transaction name in the Request

Treeview and select New Tree Browser Using Selections.

In the Request Tree view, change the Active Metric to “Avg Excl

usive Time” to isolate

the hotspots better.
Request Tree 4 - PerformaSure 1Ol x|
Browser Yiew Tools Windows Help
FI.E.B.E.F@. &. | B <% | activemeic] avg. cumuistive Time v |£ =1 | Burding Mode:|C0mp0nem -
AW & B D S | ed May1e By [[o CumulbtiveTime — A ®
Mz, Cumulative Time
Stim Os

Os Oz [25m 05]

i

v 1 v Bxclusive Time: Q

ey, Call Court
. Exceptional Exits
v, Incomplete Reguests
i, Parameter Data Serislized
hda. Parameter Data Serislized
i&ve. Return Data Serialized

-

hdax. Return Data Serialized

=7 .._servlet._ templste

=7 . olaweh MainServiet

[> ._Snoadn_Homelmpl |

I b
(

D .. naming Context |

B Query Infe [« 7T

(m|

|Agent ‘A\rg. Call Count Call Count| Total Cumu... *| Avg. Cumulat...

Avg. B

o CJGET httpiffveh Tierlfestarefcontroeb Tier - 7627 143891.150

»

1.887

4

|‘..

[[¥]

It's now pretty easy to identify the hotspot. Scroll the call graph,

if necessary, to find the

bright red JIDBC nodes (resize the column to view more of the node). We can see that the

Dat aSour ce. get Connect i on method is being called abou
request.

t 13 times per client

‘WigbLogic Pooled DataSource

Cluster: MyCluster

Time
Avg. Cumulative Time
Max. Cumulative Time
Avg. Exclusive Time

Avg. Call Count
ceptional Exits
Avg. Incomplete Requests

JDBC: WebLogic Pobled DataSource
javax.sgl.DataSource.getConnectiond

0.288 s/reqg
- slreqg
0.288 s/reqg

13.896 freg

0.000 i regl

0.000 8 e

22

PerformaSure Demo Guide

Theexecut eQuer y method call shows similar information, but we need to go deeper,
to examine the actual SQL query being generated. Because PerformaSure is integrated
with Quest’s deep diagnostic tools for database administrators, we (or our DBA) can how
simply right-click the node and launch the appropriate toal. If atool was installed, we
would right-click the get Connect i on method and select Performance Diagnostics or
SQL Tuning from the pop-up menu.

We have tracked down the root cause of this performance issue —the JDBC call being
generated by the application server is misusing the app server’s database connection pool,
causing too many queries to be run. An expert has enough information and context
through PerformaSure to determine the best way to optimize the DB connection pool.

Problem 3: EJB Passivation from Metrics evidence

So far, our performance diagnosis workflow has been to start with the high-level Request
Time view and drill down to the details with the Request Tree view. This approach works
well for transactional performance issues. Sometimes, however, J2EE performance issues
aren’t easily traceable in this manner. There are times when you need to correlate
seemingly insignificant clues from many areas of the system in order to find the source of
aproblem. PerformaSure makes it easy to diagnose a problem by analyzing thresholds and

metrics.

Rather than starti ng with the Request Timeview LS50 progressive oad 2 .
(close that window if it’s still open), we can start | Browsers | Thresholds

with the Thresholds browser. Bring up the 5 Browsers

Project Browser window and find the g1 B M
2- MetricsAnalysis: Category Use Case 24 ;E;figﬂf;f;g:‘fse%

folder. Open the folder and double-click the [3 TTeereTo™

“Thresholds Browser” item. This opens the

Thresholdsview.

PerformaSure Demo Guide 23

24

1 - Thresholds Browser - PerformaSure : =10l x|

Browser View Tools Windows Help

El. =, 8. E.FHoé. @.

AL I B RS B | yyed, May 14, 55927 — 57T [
0= 0= [23m 0=] S8t 0=
I il'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I
|
22m 30z

F Operating System f PhysicalDi=k f Disk Writes f sec f 0 (# f 5] f Petstore2 (System)

| \/J\/\«/\”\N

-+ pverage Metric Values Thresholds hac10 Min- Units: count per second

4 Threshold Violations

§ Operating System f PhysicalDigk f Disk Writes f sec /0 (# §) / Petstore2 (System)
s . Y
! Operating Systemn ! Processor % Processor Time [All Instances (%) £ Al Agents
| I Y

I Operating =ystemn ! Processor J % Processar Time [All Instances (9%) f Petstore2 (System)
I Y

L.ET hittp: £ [oe=20416:80 festore [contral § category [Cumulstive Reguest Tirme (ms) / iPlanet (iPlanet)
——

L2 GET Witpe 4 Fwes20116:80 F estore § control £ category § Cumulative Request Time (ms) £ A Agents
H . S

-

The Thresholds view provides alist of all the metrics whose thresholds were exceeded at
some point in the session. There can be many metrics listed (the bottom part of the

window), so how does one know where to start?

Logicaly, it makes sense to start with a problematic transaction. These would be entriesin
the table beginning with “Request”, signifying metrics on a specific transaction request
type. Quickly scanning the list in the Thresholds browser, we notice one. Click the
“/Request / GET http://ws20116:80 ... / Cumulative Request Time/ iPlanet” metric in the

list. The graph changes to show details on this metric.

PerformaSure Demo Guide

....80 f estore f control f category § Cumulative Request Time (m=) fiPlanet {iPlanet)

20K

Amﬂm’_’/

-+ Average Metric Values Thresholds hax 3,000 Min- M Units: milizeconds

S O N S S S O S O S S
megquest f GET hitpe £ f wws20116:80 f estore [control f categary £ Cumulative Regquest Time (ms) [Al Agerts
N .

“merating System fProcessaor § % Processor Time [All Instances (%) / Petstored (System)
| I I . || |

™ "aching f Passivations £ estore § soc (#) [Petstore2 (ebLogic)

fRequest § GET hitp: F § ws20116:80 f eztore F control f category f Cumulative Request Time (m=) § iPlanet (iPlanet) E |
I . Y Y S S S Y e |

From this graph, we can see that the response time (represented by the Y -axis) was very
fast for most of the run time (represented by the X-axis). But near the end of the run, the
response time slows down dramatically. We need to take alook at everything that was

happening in the system at the point response time started slowing down

Thisis easy to do with PerformaSure. Find the Sightline bar that 20m31 150
T nﬁnn

islocated over the metrics graph. Click the handle and drag the

ime {m:

Sightline to the 20 minute point on the graph. Thistells
PerformaSure that you want to consider and correlate metrics at
this point in the run.

Now we want to overlay all of the metrics that were exceeded at
the point specified by the Sightline. Thisisajob for the Metrics
browser. To open the Metrics browser with metrics exceeded at

g3 F

the Sightline point, simply right-click the graph and select New - /|

Metric Browser With Highlighted Metrics from the pop-up
menu.

Unitst milli=-

The Metrics browser has two panes. The left pane contains all of the metrics available to
be viewed. The right pane contains open metrics graphs. By displaying several metrics and
using the Sightline, you can make cause-and-effect ties between different metrics.

0= 20m 0= [30s] 30s

Thefirst step isto look at the

T T RN RN T RN RN (AR
1%

graphs for metrl cs exceajl ng the r = | =# B Cachihg ¥ Passivations festore fscc (#) 7

ststore? (Aeblogic) | [x]

threshold at the time in question o

(the 20 minute mark). We

immediately notice that the 700 ,'J Thresholds |7
number of Stateful EJB - P
Passivations exceeded its threshold et M-

at around the same time. Thisis Unita: count

F00

likely significant because

100

PerformaSure Demo Guide

Remove Metric

25

passivation is quite an expensive task.

But doing a metrics-based diagnosis means that we need more evidence to make the
diagnosis. We have an idea of what may be happening, but is this causing the slowdown?
In acomplex J2EE system, ametric like this may be the cause, or it may be just a
symptom — something el se may be the root of the slowdown, with passivation just a side-
effect.

If we look down the set of exceeded-threshold graphs, we see that Disk Writes per second
on the application server machine heavily exceeded its threshold around this time — good
corroborating evidence on our passivation theory. The other graphs don’t seem to provide
any evidence on the problematic transaction.

-~ Reguest

Remember that the graphs shown are only those ¢ O o ere
metrics that exceeded their thresholds at the 20-minute 9 EJB Caching
mark. We can easily open other metrics graphs using & Activations

- . & Cache Accesses
thelist in the left pane of the Metrics browser. For @ Cache Hits
example, we can see how many beans were in the cache @ Cached Beans

L. . . ©= Al Instances
at thistime by opening the WebL ogic group, and & ostorelaccaunt
double-clicking the EJB Caching > Cached Beans > e es;orej_can t
estore/scc > Petstore 1... metric. This opens the graph o eotoreorder
for that metric. @ estore/profilerngr

@ estorefs:

i i (avy) AdtninServer (Wehlr
In this graph, we see that the number of beansin the (avgy Petstore! tWiebLo
cache is very high. Thisis more solid evidence that EJB A At
passivation is the root cause. ® Passivations

= EIR Lockinm

However, to be certain of this diagnosis, we should tie these metrics back to the code
running in the application server at the same time. W€ Il use the Request Tree view, of
course, but we can also customize the view so it’ stied to the timeframe in our Metrics
browser.

From the Project Browser window, open the “Tree Browser” item in the Browsers >
2 - Metrics Analysis: Category Use Case folder. Size both the Request Tree view and
the Metrics browser so they’re both visible.

Now we want to zoom in on the timeframe in question and tie both windows together
using the Zonar and the Link Time controls. From the Metrics browser, locate the Zonar
(under the second toolbar at the top of the window). The Zonar lets you zoom the view to
only show information for a particular time period. Y ou can pick any point along the run,
and select any duration of time. Click and drag the Zonar selection bar to the 19 minute
mark as shown below:

PerformaSure Demo Guide

19m Oz [24tm 0=]

Notice that the metrics graphs are redrawn to show the new time e

constraints, that is, the point at which passivation exceeds our s l_

threshold. Now let’ s update the Request Tree view to the same Cink Time Contral. &
time congtraint. To do this, click the Link Time Control... button

and specify “Link All” from the control dialog. Now the Request Tree view is linked,
showing the time set up for the Metrics browser. Moving or sizing the Zonar in one
window affects the other. Resize the end of the Zonar to 4 minutes duration. Now in the

Request Tree view we are guaranteed to be looking at performance hotspots for the time
passivation became problematic.

In the Request Tree view, change the Active Metric to Avg. Exclusive Time and use the
Expand Critical Paths button to hide unrelated nodes. There's only one hotspot in the
call graph. It'sinthe EJB cr eat e method. Thiswas the bottleneck at this time period.

=7 . petstore control.ejh. ShoppingClientControllerEJB_Snoada_Homelmpl

orn.gun.j2ee blusprints. petstore util EJBLH

PerformaSure Demo Guide 27

28

A bit of research into how the EJB cr eat e method works reveas that this method is
responsible for performing EJB passivation, when necessary.

So we' ve come to the definite root cause of this performance issue. While the metrics
pointed towards passivation, it was only by tying back to the transaction execution path
(something only PerformaSure can do) that we could definitively state that thiswasin fact
the root cause of the problem.

For More Information

For additional information on PerformaSure:

e Visit http://java.quest.com/performasure

e SeeHoning in on J2EE System Performance, An Executive White Paper
Aberdeen Group

e SeePerformaSure User’'s Guide

For information on companies that are successfully using PerformaSure or additional
information, please contact:

Rini Gahir

PerformaSure Product Manager
Quest Software

(416) 643-4849
rini.gahir@quest.com

Erin Jones

Public Relations Director
Quest Software

(949) 754-8032
erin.jones@quest.com

About Quest Software

Quest Softwareis aleading provider of application management solutions. Quest provides
customers with Application Confidence(sm) by delivering reliable software products to
develop, deploy, manage and maintain enterprise applications without expensive
downtime or business interruption. Quest products increase the performance and uptime of
business-critical applications and enable I T professional s to achieve more with fewer

PerformaSure Demo Guide

http://java.quest.com/performasure
mailto:rini.gahir@quest.com
mailto:erin.jones@quest.com

resources. Headquartered in Irvine, Calif., the company has offices worldwide and more
than 18,000 global customers. For more information, visit www.quest.com.

Java/J2EE Products Available from Quest Software

Foglight for J2EE — The Application Monitoring Solution

Foglight is a 24x7 distributed application-monitoring solution that provides end-to-end
monitoring of every component affecting application performance. J2EE cartridges
monitor the health of the application server environment to detect problems before end
users are impacted.

Visit http://www.quest.com/foglight.

Spotlight on WebLogic Server — Real-time Application Server Performance Viewer
Spotlight on WebL ogic Server provides rea -time performance information on the
application, service and resource usage within WebL ogic Server. Color-coded alarms
enable the WebL ogic administrator to quickly determine which server or applicationis
experiencing a performance problem. Once a problem is exposed, expert advice provides
insight into the problem and how to resolveit.

Visit http://java.quest.com/spotlight.

JProbe — Premier performance tuning toolkit for Java

Designed for both client- and server-side environments, JProbe is a comprehensive,
award-winning toolkit for diagnosing code errors and inefficiencies. JProbe paints
graphical pictures of everything from memory usage to calling relationships, helping
developers to understand precisely what is causing problemsin Java applications, servlets,
JSPs and EJBs - right down to the offending line of source code.

Visit http://java.quest.com/jprobe.

JClass — The only Java server and client components you need

JClass is a comprehensive set of Java components that enables devel opers to add
sophisticated user interfaces and dynamic content to rich- and thin-client applications.
Whether GUI components for Swing-based devel opment or server-side components for
servlet- and JSP-based presentation interfaces, JClass accel erates the devel opment of
professional business applications.

Visit http://java.quest.com/jclass.

DeployDirector — Java provisioning and management

DeployDirector is a Java application provisioning and management solution that helps I T
organizations to deploy, manage and update rich clients. DeployDirector maximizes
uptime of core systems while dramatically reducing time to repair.

Visit http://java.quest.com/deploydirector.

PerformaSure Demo Guide 29

http://www.quest.com/
http://www.quest.com/foglight
http://java.quest.com/spotlight
http://java.quest.com/jprobe
http://java.quest.com/jclass
http://java.quest.com/deploydirector

	Introduction
	PerformaSure Overview
	Key Features
	Runs on Production or Pre-Production Test Systems
	Component-level Instrumentation with Detail Dial
	Transaction Tag and Follow with Tree View
	Power Diagnostics GUI
	Server-by-server Response-time Breakdowns
	Reporting and Performance Data Export

	Why PerformaSure?
	PerformaSure Addresses J2EE Challenges
	Shrinking Development Timelines and Iterative Deployment Cycles
	The Increasing Complexity of Infrastructures
	Guesswork and Finger Pointing

	PerformaSure is Designed for J2EE Problem Solving
	PerformaSure Provides Visibility Into the Entire J2EE Application

	PerformaSure Advantages
	Transaction-Centric Complete J2EE Application Diagnostics
	Comprehensive System-wide View
	Low, Configurable Overhead
	Collaboration Across Teams
	Integration with Quest’s Detailed Diagnosis Tools

	PerformaSure Supported Platforms and Requirements
	Platform and Environment Support
	Operating Systems
	Application Servers
	HTTP Servers
	Database Servers
	Quest Tool Integration

	PerformaSure System Requirements
	Server
	Workstation

	Getting Started with the PerformaSure Demo
	Installing the PerformaSure Demo Version
	Launching the PerformaSure Demo Version

	PerformaSure – A First Look
	Key Components
	PerformaSure Agents
	PerformaSure Nexus
	PerformaSure Workstation

	The PerformaSure Approach to J2EE Diagnosis
	Introducing PerformaSure’s Viewer Windows
	Request Time View
	Request Tree View
	Threshold View
	Metrics View
	Network Traffic View

	Diagnosing Example Problems with PerformaSure
	Start Workstation, Open Project and See Three Problems
	Problem 1: Inefficient Java code
	Problem 2: Misuse of database connection pool
	Problem 3: EJB Passivation from Metrics evidence

	For More Information
	About Quest Software
	Java/J2EE Products Available from Quest Software

